ENG/中
老虎证券
行情
产品介绍
Cash Boost账户
美股
美股碎股
港股
A股通
期权
期货
美国国债
定投
固定票息票据
Tiger BOSS Debit Card
基金超市
老虎钱袋子
老虎API平台
Wealth
费用
综合账户
股票与ETF
期权、窝轮与牛熊证
期货
债券
基金超市
Cash Boost
股票与ETF
融资利率
活动
帮助
账户操作
如何开户
开户文件
账户类型
资金与转仓
入金
DDA快捷入金
出金
转入股票
转出股票
货币兑换
产品与交易
可交易产品
订单类型
交易规则
申报
融资融券
保证金与杠杆
风险管理
做空风险
基金超市
基金开户与交易
Cash Boost账户
Cash Boost 账户FAQ
如何开通 Cash Boost 账户
如何用Cash Boost 账户交易
如何绑定CDP证券账户
Tiger Boss Debit Card
常见问题
费用说明
如何充值
如何使用我的Debit card
账单报表
账单报表
股息(分红)
专栏
TigerAI
机构
财富及资产管理人
自营交易机构
介绍经纪商
三方服务商
登录
立即注册
Toggle
美股
详情
本页面由Tiger Fintech (Singapore) Pte. Ltd.提供服务
拉夫劳伦
279.81
+5.29
1.93%
盘后:
279.81
0.0000
0.00%
16:20 EDT
成交量:
35.22万
成交额:
9,836.34万
市值:
169.49亿
市盈率:
24.10
高:
280.47
开:
275.12
低:
275.12
收:
274.52
数据加载中...
总览
公司
新闻资讯
公告
Agent RL与智能体进化关键一步:TaskCraft实现复杂任务自动生成
市场资讯
·
07-04
关于硅谷AI大战的现状,这篇文章讲清楚了
华尔街见闻
·
07-03
智谱再融10亿!获上海国资押注,开源视觉大模型,能解说球赛,还会玩手机
市场资讯
·
07-02
10B级模型SOTA,超8倍参数“大”模型,智谱开源GLM-4.1V-Thinking
市场资讯
·
07-02
比音勒芬需要拉夫劳伦女孩
略大参考
·
07-01
只用2700万参数,这个推理模型超越了DeepSeek和Claude
市场资讯
·
06-30
突破通用领域推理的瓶颈!清华NLP实验室强化学习新研究RLPR
市场资讯
·
06-27
7B模型超越DeepSeek-R1:模仿人类教师,弱模型也能教出强推理LLM
市场资讯
·
06-25
去中心化 AI 协议 Prime Intellect 发布开放推理数据集和行星级合成数据生成运行模型 SYNTHETIC-2
foresightnews
·
06-24
强化学习新发现:无需数学样本,仅游戏训练AI推理大增
市场资讯
·
06-24
2025年10个顶级GPU云平台:Serverless+RL开启AI普惠时代
DoNews
·
06-24
股市刚反弹,高管们却忙着套现?什么信号?
金融界
·
06-21
特斯联邵岭:以多模态统一空间模型打造空间智能
市场资讯
·
06-20
掀翻传统推荐!OneRec端到端模型如何同时“吞噬”效果与成本双难题
市场资讯
·
06-20
DPO与GRPO谁更胜一筹?港中文、北大等发布首个系统性对比研究
市场资讯
·
06-19
对话特斯联邵岭:空间智能是构建世界模型的必要前提
市场资讯
·
06-18
MiniMax深夜开源!首个推理模型,4560亿参数、百万上下文、价格低至0.8元
智东西
·
06-17
SFT+RL双管齐下:ReasonGen-R1如何破解文生图“指令不遵”难题?
市场资讯
·
06-16
通义实验室最新成果WebDancer:自主智能Deep Research的新时代
市场资讯
·
06-12
新闻摘要-华尔街日报》--6 月 11 日
路透中文
·
06-11
更多
{"basename":"/hans","ssrTDKData":{"titleTemplate":"%s - 老虎证券","title":"老虎证券全球投资理财平台| 一站式投资美股新股港股A股","description":"老虎证券助您一站式投资美股,新股,港股,A股等全球金融理财产品。新加坡华人最信赖的在线投资平台,现在加入即享低费用,24/5 无时差炒美股投资理财!","keywords":"老虎证券,老虎证券开户,老虎券商,老虎证券官网,老虎证券app,tigertrade老虎证券,股票,炒股,新加坡股票交易平台,投资,投资理财","social":{"ogDescription":"老虎证券助您一站式投资美股,新股,港股,A股等全球金融理财产品。新加坡华人最信赖的在线投资平台,现在加入即享低费用,24/5 无时差炒美股投资理财!","ogImage":"https://c1.itigergrowtha.com/portal5/static/media/og-logo.be62fbe1.png","ogUrl":"https://www-web.itiger.com/hans/stock/RL/news"},"companyName":"老虎证券"},"pageData":{"isMobile":false,"isTiger":false,"isTTM":true,"region":"SGP","license":"TBSG","edition":"fundamental","symbol":"RL","isAnalysisPage":false},"__swrFallback__":{"@#url:\"https://hq.skytigris.cn/stock_info/detail/global\",params:#delay:false,,method:\"POST\",data:#items:@#symbol:\"RL\",,,,,undefined,":{"symbol":"RL","market":"US","secType":"STK","nameCN":"拉夫劳伦","latestPrice":279.81,"timestamp":1751562000000,"preClose":274.52,"halted":0,"volume":352160,"hourTrading":{"tag":"盘后","latestPrice":279.81,"preClose":279.81,"latestTime":"16:20 EDT","volume":6563,"amount":1836096.8186,"timestamp":1751574000520},"delay":0,"floatShares":38074710,"shares":60572991,"eps":11.61,"marketStatus":"休市中","change":5.29,"latestTime":"07-03 13:00:00 EDT","open":275.12,"high":280.47,"low":275.12,"amount":98363408.15672,"amplitude":0.019489,"askPrice":0,"askSize":0,"bidPrice":0,"bidSize":0,"shortable":3,"etf":0,"ttmEps":11.61,"tradingStatus":0,"nextMarketStatus":{"tag":"盘前交易","tradingStatus":1,"beginTime":1751875200000},"marketStatusCode":7,"adr":0,"adrRate":0,"listingDate":866088000000,"exchange":"NYSE","adjPreClose":274.52,"dividendRate":0.011794,"preHourTrading":{"tag":"盘前","latestPrice":275.01,"preClose":274.52,"latestTime":"09:07 EDT","volume":51,"amount":14049.4698,"timestamp":1751548052274},"postHourTrading":{"tag":"盘后","latestPrice":279.81,"preClose":279.81,"latestTime":"16:20 EDT","volume":6563,"amount":1836096.8186,"timestamp":1751574000520},"volumeRatio":0.9682783758473749,"impliedVol":0.4245,"impliedVolPercentile":0.632},"@#url:\"https://hq.skytigris.cn/stock_info/fundamental/all\",params:#delay:false,,method:\"POST\",data:#items:@#symbol:\"RL\",,,,,undefined,":{"symbol":"RL","floatShares":38074710,"roa":"8.46%","roe":"29.49%","lyrEps":11.867412,"volumeRatio":0.9682783758473749,"shares":60572991,"dividePrice":3.3,"high":280.47,"amplitude":0.019489,"preClose":274.52,"low":275.12,"week52Low":155.96,"pbRate":"6.55","psRate":"2.39","week52High":289.33,"institutionHeld":0.7653,"latestPrice":279.81,"eps":11.61,"divideRate":0.011794,"volume":352160,"delay":0,"ttmEps":11.61,"open":275.12,"prevYearClose":230.98,"prevWeekClose":276.35,"prevMonthClose":274.28,"prevQuarterClose":274.28,"fiveDayClose":273.49,"twentyDayClose":277.86,"sixtyDayClose":193.17},"$inf$@#url:\"https://stock-news.skytigris.cn/v2/news/list\",params:#symbols:\"RL\",pageSize:20,pageCount:1,lang_content:\"cn\",edition:\"fundamental\",,,undefined,":[{"items":[{"id":"2548518083","title":"Agent RL与智能体进化关键一步:TaskCraft实现复杂任务自动生成","url":"https://stock-news.laohu8.com/highlight/detail?id=2548518083","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2548518083?lang=zh_cn&edition=fundamental","pubTime":"2025-07-04 13:05","pubTimestamp":1751605500,"startTime":"0","endTime":"0","summary":"近年来,基于智能体的强化学习与智能体优化在学术界引发了广泛关注。为应对上述挑战,OPPO 研究院的研究者提出了 TaskCraft,一个面向智能体任务的自动化生成框架,旨在高效构建具备可扩展难度、多工具协同与可验证执行路径的智能体任务实例。","market":"other","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-07-04/doc-infehuep3051083.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4585","RL","BK4588","LU0006061336.USD","BK4202"],"gpt_icon":0},{"id":"2548080579","title":"关于硅谷AI大战的现状,这篇文章讲清楚了","url":"https://stock-news.laohu8.com/highlight/detail?id=2548080579","media":"华尔街见闻","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2548080579?lang=zh_cn&edition=fundamental","pubTime":"2025-07-03 18:41","pubTimestamp":1751539284,"startTime":"0","endTime":"0","summary":"SemiAnalysis创始人Dylan Patel认为,Meta正全力追逐“超级智能”;苹果或因文化和资源劣势在AI人才争夺中掉队;OpenAI与微软的IP控制权之争暗藏隐忧;英伟达虽强劲,但策略失误让AMD有机可乘。此外,他不太看好设备端AI,认为未来核心AI能力仍在云端。白领工作将受AI冲击。而OpenAI和Meta将领跑“超级智能”竞赛。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":{"source":null,"url":"https://wallstreetcn.com/articles/3750362","rn_cache_url":null,"directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://wallstreetcn.com/articles/3750362","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":null,"symbols":["LU1069344957.HKD","NVD","SGXZ99366536.SGD","NVDS","NVDU","NVDY","3NVD.UK","IE00BDRTCR15.USD","BK4550","LU1974910355.USD","LU0472753341.HKD","LU2506951792.HKD","LU2543165471.USD","LU1188199696.SGD","SNVD.UK","LU2286300806.USD","NVD3.UK","LU1697837992.HKD","LU1914381329.SGD","LU2106854487.HKD","RL","NVDD","LU1721428933.USD","LU2298321311.HKD","IE000KEQY171.SGD","NVD2.UK","LU0708994859.HKD","LU0157215616.USD","LU1732799900.SGD","NVDX","SSI","IE0034235295.USD","BK4097","LU1303367103.USD","AGI","NVDS.UK","SG9999015358.SGD","LU1712237335.SGD","LU0661504455.SGD","NVIW.SI","2NVD.UK","LU1791710582.SGD","LU1221951129.SGD","FB","GFS","LU0994945656.USD"],"gpt_icon":1},{"id":"2548865185","title":"智谱再融10亿!获上海国资押注,开源视觉大模型,能解说球赛,还会玩手机","url":"https://stock-news.laohu8.com/highlight/detail?id=2548865185","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2548865185?lang=zh_cn&edition=fundamental","pubTime":"2025-07-02 15:40","pubTimestamp":1751442000,"startTime":"0","endTime":"0","summary":"开源之外,智谱还在今天举行的智谱开放平台产业生态大会上宣布,该公司获得浦东创投集团和张江集团联合战略投资,总额10亿元。目前,开源社区缺乏一种在广泛任务范围内持续超越传统同类参数规模非推理模型的多模态推理模型。在视觉编码器部分,智谱将原始的二维卷积替换为三维卷积,尤其适用于视频理解,有效提升了处理效率。","market":"hk","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-07-02/doc-infeanhk2500975.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"1","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4585","BK4214","LU0006061336.USD","BK4202","SFT","RL","BK4588"],"gpt_icon":0},{"id":"2548597918","title":"10B级模型SOTA,超8倍参数“大”模型,智谱开源GLM-4.1V-Thinking","url":"https://stock-news.laohu8.com/highlight/detail?id=2548597918","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2548597918?lang=zh_cn&edition=fundamental","pubTime":"2025-07-02 12:22","pubTimestamp":1751430120,"startTime":"0","endTime":"0","summary":"智谱正式发布 GLM-4.1V-Thinking 系列模型,并率先开源GLM-4.1V-9B-Thinking,标志着智谱 GLM 视觉大模型向高阶认知迈出了关键一步。在 18 项权威评测中,GLM-4.1V-9B-Thinking 的表现已可比肩甚至超越参数量高达 72B 的 Qwen2.5-VL-72B,充分展示出结构设计与训练策略的先进性与效率。模型原理1. 模型架构GLM-4.1V-Thinking 模型架构由三个核心模块组成:视觉编码器、多层感知机适配器以及语言解码器。2训练流程GLM-4.1V-Thinking 的训练过程分为三个阶段:预训练、监督微调 和 强化学习。","market":"sg","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-07-02/doc-infczzsq2682912.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4585","BK4202","RL","LU0006061336.USD","BK4214","SFT","BK4588"],"gpt_icon":0},{"id":"2548075856","title":"比音勒芬需要拉夫劳伦女孩","url":"https://stock-news.laohu8.com/highlight/detail?id=2548075856","media":"略大参考","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2548075856?lang=zh_cn&edition=fundamental","pubTime":"2025-07-01 15:55","pubTimestamp":1751356501,"startTime":"0","endTime":"0","summary":"比音勒芬近来的市值缩水严重——从2023年的200亿降至不到100亿,利润也出现了自上市以来的首次负增长,谢秉政需要给焦躁的股东们一个合理解释。说这话时,比音勒芬2024年年度财报还没有出。到2025年一季报,比音勒芬营业收入12.86亿元,同比增长1.41%,归属于上市公司股东的净利润为3.31亿元,同比下滑8.47%。比音勒芬要赌一个未来,但前提是,品牌的底蕴能否撑到未来到来。因为除了“衣中茅台”外,比音勒芬还有个“外号”——中国版“拉夫劳伦”。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":{"source":"tencent","url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN20250701155726a727e4c9&s=b","rn_cache_url":null,"customStyle":"body{padding-top:10px;}#news_title{font-weight:bold;#titleStyle#;}#news_description span{font-size:12px;#descriptionStyle#;}.footer-note{#statement#}","selectors":".mod-LoadTzbdNews, body","filters":".relate-stock, .hot-list, .recom-box, .wx-sou","directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN20250701155726a727e4c9&s=b","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"tencent","symbols":["BK4588","BK4585","BK4202","RL","LU0006061336.USD"],"gpt_icon":0},{"id":"2547093352","title":"只用2700万参数,这个推理模型超越了DeepSeek和Claude","url":"https://stock-news.laohu8.com/highlight/detail?id=2547093352","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2547093352?lang=zh_cn&edition=fundamental","pubTime":"2025-06-30 18:31","pubTimestamp":1751279460,"startTime":"0","endTime":"0","summary":"HRM 仅包含 2700 万个参数,仅使用 1000 个训练样本,便在复杂的推理任务上取得了卓越的性能。此外,在抽象与推理语料库 上,HRM 的表现优于上下文窗口明显更长的大型模型。右图 —— 仅使用约 1000 个训练样本,HRM在归纳基准测试和具有挑战性的符号树搜索谜题上就超越了最先进的 CoT 模型,而 CoT 模型则完全失败。HRM 采用随机初始化,无需思维链,直接根据输入完成任务。HRM 克服了这一根本限制,有效地利用其计算深度实现了近乎完美的准确率。","market":"fut","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-30/doc-infcweke9720614.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["IE00BFXG1179.USD","LU0211326755.USD","BK4588","LU0211326839.USD","ACT","LU0149725797.USD","BK4202","BK4598","T","LU1621768206.USD","LU1621768115.EUR","BK4143","BK4534","LU1621767737.EUR","LU1621767810.EUR","ARC","BK4585","BK4515","LU0496365809.HKD","BK4195","LU1571399168.USD","LU0006061336.USD","BK4507","RL","LU2384288077.EUR","LU0976567544.SGD","BK4115","BK4550","IE00BSNM7G36.USD","BK4229"],"gpt_icon":0},{"id":"2546642507","title":"突破通用领域推理的瓶颈!清华NLP实验室强化学习新研究RLPR","url":"https://stock-news.laohu8.com/highlight/detail?id=2546642507","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2546642507?lang=zh_cn&edition=fundamental","pubTime":"2025-06-27 10:30","pubTimestamp":1750991400,"startTime":"0","endTime":"0","summary":"针对这一关键挑战,清华大学自然语言处理实验室提出了一项关键性技术 —— 基于参考概率奖励的强化学习。同时,RLPR 提出基于奖励标准差的动态过滤机制,进一步提升强化学习的稳定性和性能提升。目前 RLPR 相关代码、模型、数据、论文均已开源。结果表明,PR 在 0.5B 规模即取得了显著优于规则奖励和验证器模型奖励的质量。RLPR 在 Gemma、Llama、Qwen 等不同基座模型上均稳定提升推理能力总结RLPR 提出了创新的 Prob-to-Reward 奖励机制,解决了现有 RLVR 范式的领域依赖问题。","market":"other","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-27/doc-infcnrzr2751855.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4081","LU0006061336.USD","BK4588","BK4585","BK4202","RL","EMA"],"gpt_icon":0},{"id":"2546271298","title":"7B模型超越DeepSeek-R1:模仿人类教师,弱模型也能教出强推理LLM","url":"https://stock-news.laohu8.com/highlight/detail?id=2546271298","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2546271298?lang=zh_cn&edition=fundamental","pubTime":"2025-06-25 14:29","pubTimestamp":1750832940,"startTime":"0","endTime":"0","summary":"用Sanaka AI的新方法训练出的7B小模型,在传授推理技能方面,比671B的DeepSeek-R1还要有效。像人类老师一样许多高级推理模型,如DeepSeek-R1,遵循两阶段的训练过程:首先训练教师模型,然后使用其输出训练学生模型,最终产品为学生模型。竞争方法使用规模更大的模型,如DeepSeek-R1和QwQ,并结合GPT-4o-mini等工具在用于训练学生模型之前清理其输出,以获得额外帮助。","market":"other","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-25/doc-infchkck8083801.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4202","BK4585","LU0006061336.USD","BK4588","RL"],"gpt_icon":0},{"id":"2545236123","title":"去中心化 AI 协议 Prime Intellect 发布开放推理数据集和行星级合成数据生成运行模型 SYNTHETIC-2","url":"https://stock-news.laohu8.com/highlight/detail?id=2545236123","media":"foresightnews","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2545236123?lang=zh_cn&edition=fundamental","pubTime":"2025-06-24 22:45","pubTimestamp":1750776300,"startTime":"0","endTime":"0","summary":null,"market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://foresightnews.pro/foresightnews/news/detail/76241","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"foresightnews_live","symbols":["SG9999017495.SGD","IE00B19Z3581.USD","IE00BZ199S13.USD","SGXZ51526630.SGD","BK4536","IE00BFMHRM44.USD","LU1316542783.SGD","SGXZ99366536.SGD","GB00BDT5M118.USD","IE00B19Z3B42.SGD","BK4230","LU0353189680.USD","SG9999015952.SGD","SG9999014906.USD","BK4551","RL","SG9999015978.USD","LU0719512351.SGD","SG9999014880.SGD","LU0642271901.SGD","LU2264538146.SGD","SG9999015986.USD","IE0002270589.USD","SG9999018857.SGD","BK4588","BK4202","BK4503","BK4550","LU0106261372.USD","LU1861219969.SGD","SG9999018865.SGD","BK4535","SGXZ81514606.USD","SG9999014898.SGD","UBER","LU1861214812.USD","LU0006306889.USD","LU0082616367.USD","LU1814569148.SGD","LU1064131342.USD","LU1983260115.SGD","BK4585","SG9999015945.SGD","LU0006061336.USD","LU0127658192.USD","LU2087625088.SGD","LU1988902786.USD","BK4022","SGXZ31699556.SGD","LU2360107325.USD"],"gpt_icon":0},{"id":"2545222402","title":"强化学习新发现:无需数学样本,仅游戏训练AI推理大增","url":"https://stock-news.laohu8.com/highlight/detail?id=2545222402","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2545222402?lang=zh_cn&edition=fundamental","pubTime":"2025-06-24 16:46","pubTimestamp":1750754760,"startTime":"0","endTime":"0","summary":"最近,强化学习领域出现了一个颠覆性发现:研究人员不再需要大量数学训练样本,仅仅让 AI 玩简单游戏,就能显著提升其数学推理能力。此前已有研究发现,即使不提供标准答案,仅用数学问题进行强化学习也能提高模型性能,这让人们开始重新思考强化学习的训练方式。执行后会从环境获得奖励,用于进行强化学习。两款游戏的设计哲学互补:贪吃蛇主要提升 2D 坐标相关的数学表现,旋转游戏则更适合角度和长度推理。","market":"sg","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-24/doc-infcemnh8974111.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4585","BK4202","RL","LU0006061336.USD","BK4214","SFT","BK4588"],"gpt_icon":0},{"id":"2545440647","title":"2025年10个顶级GPU云平台:Serverless+RL开启AI普惠时代","url":"https://stock-news.laohu8.com/highlight/detail?id=2545440647","media":"DoNews","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2545440647?lang=zh_cn&edition=fundamental","pubTime":"2025-06-24 15:56","pubTimestamp":1750751801,"startTime":"0","endTime":"0","summary":"而国内同样参与者众多,比如2025年第二季度,阿里云、九章云极等企业先后发布新一代AI基础设施服务,如阿里云的FlashMoE和九章云极基于Serverless+RL架构的九章智算云Alaya NeW Cloud。在此背景下,“Serverless+RL”技术组合逐渐脱颖而出。因此,Serverless+RL的融合不仅是技术层面的进步,更是AI产业商业化的加速器。关键趋势一:GPU云厂商加速技术降本和AI开发服务升级1、九章云极:发布九章智算云Alaya NeW Cloud 2.0,开创中国Serverless+RL技术路线。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":{"source":"tencent","url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN2025062416060495293f56&s=b","rn_cache_url":null,"customStyle":"body{padding-top:10px;}#news_title{font-weight:bold;#titleStyle#;}#news_description span{font-size:12px;#descriptionStyle#;}.footer-note{#statement#}","selectors":".mod-LoadTzbdNews, body","filters":".relate-stock, .hot-list, .recom-box, .wx-sou","directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN2025062416060495293f56&s=b","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"tencent","symbols":["LU0323591593.USD","LU0820561818.USD","BK4550","LU0077335932.USD","LU0316494557.USD","LU1852331112.SGD","LU0689472784.USD","BK4533","IE00B1XK9C88.USD","IE0034235303.USD","LU1551013425.SGD","LU1066053197.SGD","BK4588","LU1232071149.USD","BK4511","BK4543","BK4574","LU2756315664.SGD","SG9999015952.SGD","LU0348723411.USD","LU2750360641.GBP","LU1861558580.USD","LU2471134796.USD","LU2063271972.USD","LU0820561909.HKD","LU1145028129.USD","SG9999015945.SGD","LU0234570918.USD","LU0345770308.USD","LU2213496289.HKD","LU0964807845.USD","LU1720051108.HKD","RL","LU0082616367.USD","LU1066051225.USD","IE00BJLML261.HKD","LU2326559502.SGD","LU0234572021.USD","BK4612","LU1861215975.USD","BK4598","LU2471134879.HKD","LU1435385759.SGD","LU1629891620.HKD","TSLA","TSYW.SI","LU2360106780.USD","LU1429558221.USD","SG9999015978.USD","LU2250418816.HKD"],"gpt_icon":1},{"id":"2545101880","title":"股市刚反弹,高管们却忙着套现?什么信号?","url":"https://stock-news.laohu8.com/highlight/detail?id=2545101880","media":"金融界","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2545101880?lang=zh_cn&edition=fundamental","pubTime":"2025-06-21 08:29","pubTimestamp":1750465745,"startTime":"0","endTime":"0","summary":"在最近股市反弹的背景下,一些公司高管进行了千万美元级别的股票减持,其中包括两家领先科技公司的高管。其中一笔来自CrowdStrike公司总裁Michael Sentonas,他于6月11日出售了近1200万美元的公司股票。截至本周一,CrowdStrike股价今年以来已上涨约40%。尽管博通今年涨幅不如CrowdStrike,截至本周初累计上涨约7%,但该股在过去两年里均实现翻倍。这笔交易使他名下已归属股票权益减少了50%以上。Fair Isaac公司首席财务官Steven Weber于6月9日出售了1,000股,套现174万美元。","market":"sh","thumbnail":"http://imgcloud.jrjimg.cn/2025/06/weixin/one_20250621082932147.png","type":0,"news_type":0,"thumbnails":["http://imgcloud.jrjimg.cn/2025/06/weixin/one_20250621082932147.png"],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://usstock.jrj.com.cn/2025/06/21082951214943.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"-1","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"jinrongjie_highlight","symbols":["BK4566","IE00B7KXQ091.USD","LU1244550221.USD","LU2237443895.HKD","BK4097","FICO","BK4554","LU0965509101.SGD","AVGO","LU0787776722.HKD","LU2361044865.SGD","LU2471134523.USD","LU0170899867.USD","LU0348723411.USD","LU0784385170.HKD","LU2168564222.USD","PPC","LU2433249047.HKD","LU0476273544.USD","LU2125154935.USD","IE00BK4W5M84.HKD","LU2125909759.SGD","LU2168563687.JPY","RL","LU2237443382.USD","IE00BFSS7M15.SGD","HQY","LU1169590202.USD","LU2125909593.SGD","LU1003077747.HKD","IE00BLSP4239.USD","LU0203201768.USD","LU2023250504.SGD","BK4543","LU0868494617.USD","LU1169589451.USD","IE00BFSS8Q28.SGD","LU1923622291.USD","LU1814569148.SGD","CRWD","LU0949170426.SGD","LU0345770308.USD","LU1935042215.USD","LU1037948541.HKD","LU0079474960.USD","SG9999002224.SGD","LU0553294199.USD","LU1988902786.USD","LU2089985449.USD"],"gpt_icon":1},{"id":"2544149452","title":"特斯联邵岭:以多模态统一空间模型打造空间智能","url":"https://stock-news.laohu8.com/highlight/detail?id=2544149452","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2544149452?lang=zh_cn&edition=fundamental","pubTime":"2025-06-20 16:01","pubTimestamp":1750406460,"startTime":"0","endTime":"0","summary":"同时,特斯联也在利用动态自适应时序同步技术实现不同模态数据之间的对齐——将所有的模态数据统一到同一个语义空间,结合大模型的预训练和强化学习技术,打造与用户场景对齐的多模态融合空间智能大模型。","market":"fut","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-20/doc-infateun0792406.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4202","LU0006061336.USD","BK4588","BK4585","RL"],"gpt_icon":0},{"id":"2544435721","title":"掀翻传统推荐!OneRec端到端模型如何同时“吞噬”效果与成本双难题","url":"https://stock-news.laohu8.com/highlight/detail?id=2544435721","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2544435721?lang=zh_cn&edition=fundamental","pubTime":"2025-06-20 14:58","pubTimestamp":1750402680,"startTime":"0","endTime":"0","summary":"快手技术团队最新提出的“OneRec”系统,正是这一思路的突破。首次让推荐系统达到与主流AI模型比肩的算力效能水平。OneRec不仅论证了推荐系统与LLM技术栈深度融合的必要性,更重构了互联网核心基础设施的技术DNA。随着其新范式的到来,推荐系统将加速迎来“端到端生成式觉醒”时刻。","market":"sg","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-20/doc-infateuk3985955.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["LU2097828631.EUR","BK1591","LU1188198961.HKD","LU0326950275.SGD","BK4585","LU1719994722.HKD","LU1720050803.USD","LU2097828805.USD","81024","BK1608","LU1251922891.USD","LU1303224171.USD","BK1575","01024","LU2097828557.USD","LU2097828714.EUR","BK4588","LU0348766576.USD","LU0593848301.USD","LU0463099449.HKD","LU0348767384.USD","BK1615","KSTmain","BK1610","BK4202","LU2097828474.EUR","LU0244354667.USD","LU1770034418.SGD","LU0006061336.USD","LU1794554557.SGD","BK1590","BK1095","RL"],"gpt_icon":1},{"id":"2544166352","title":"DPO与GRPO谁更胜一筹?港中文、北大等发布首个系统性对比研究","url":"https://stock-news.laohu8.com/highlight/detail?id=2544166352","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2544166352?lang=zh_cn&edition=fundamental","pubTime":"2025-06-19 18:33","pubTimestamp":1750329180,"startTime":"0","endTime":"0","summary":"近日,一篇来自香港中文大学、北京大学及上海人工智能实验室的最新研究给出了答案。图 1: GRPO 与 DPO 在自回归图像生成中的研究总览,涵盖了域内域外性能对比、不同奖励模型的影响以及扩展策略的效果。在DPO 与 GRPO 的对比中,研究者确保了两者在计算成本上的可比性。例如,DPO 中每个 prompt 生成的图像数量与 GRPO 中的组大小对齐,并使用相同的奖励模型。总结与展望这项研究为我们提供了一幅关于 DPO 和 GRPO 在自回归图像生成领域应用的清晰图景。","market":"sg","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-19/doc-infarhch4870755.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4202","RL","LU0006061336.USD","BK4585","BK4588"],"gpt_icon":0},{"id":"2544910240","title":"对话特斯联邵岭:空间智能是构建世界模型的必要前提","url":"https://stock-news.laohu8.com/highlight/detail?id=2544910240","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2544910240?lang=zh_cn&edition=fundamental","pubTime":"2025-06-18 09:37","pubTimestamp":1750210620,"startTime":"0","endTime":"0","summary":"空间智能和World Model并不是同一概念,但它们之间是紧密相关的。空间智能提供的强大的空间感知和理解能力,是构建准确、全面的World Model的必要前提。特斯联目前采用空间数据知识、领域模型工具,AI智能体以及空间感知模型技术相融合的方案,利用构建的知识库和系统工具,增强模型的空间感知能力。","market":"sg","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-18/doc-infamzsp5910679.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4585","BK4202","RL","LU0006061336.USD","BK4588"],"gpt_icon":0},{"id":"2544931382","title":"MiniMax深夜开源!首个推理模型,4560亿参数、百万上下文、价格低至0.8元","url":"https://stock-news.laohu8.com/highlight/detail?id=2544931382","media":"智东西","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2544931382?lang=zh_cn&edition=fundamental","pubTime":"2025-06-17 11:40","pubTimestamp":1750131644,"startTime":"0","endTime":"0","summary":"作者 | 程茜编辑 | 心缘智东西6月17日报道,今日凌晨,“大模型六小虎”之一MiniMax发布全球首个开源大规模混合架构的推理模型MiniMax-M1,并官宣了为期五天的连更计划。此外,研究人员训练了两个版本的MiniMax-M1模型,其思考预算分别为40K和80K。M1在MiniMax APP和Web上支持不限量免费使用。在这样的背景下,作为MiniMax推出的首个推理模型,MiniMax-M1正是其面对这一行业发展趋势在算法创新上的探索。","market":"sh","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.ifeng.com/c/8kFxRzQknwS","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"fenghuang_stock","symbols":["BK4585","LU0006061336.USD","BK4588","RL","BK4202"],"gpt_icon":0},{"id":"2543678781","title":"SFT+RL双管齐下:ReasonGen-R1如何破解文生图“指令不遵”难题?","url":"https://stock-news.laohu8.com/highlight/detail?id=2543678781","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2543678781?lang=zh_cn&edition=fundamental","pubTime":"2025-06-16 17:22","pubTimestamp":1750065720,"startTime":"0","endTime":"0","summary":"ReasonGen-R1 使得自回归图像生成模型可以端到端地在输出图片之前先进行文本“思考”,大幅提升了基座模型的语义遵循能力,并在多个语义指标上取得突破。目前,ReasonGen-R1 已全面开源。方法概览ReasonGen-R1 的训练包括两个核心阶段:监督微调阶段以及强化学习阶段。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-16/doc-infahksh9599543.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4202","LU0006061336.USD","BK4214","RL","BK4588","BK4585","SFT"],"gpt_icon":0},{"id":"2542601115","title":"通义实验室最新成果WebDancer:自主智能Deep Research的新时代","url":"https://stock-news.laohu8.com/highlight/detail?id=2542601115","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2542601115?lang=zh_cn&edition=fundamental","pubTime":"2025-06-12 15:06","pubTimestamp":1749711960,"startTime":"0","endTime":"0","summary":"在这种背景下,WebDancer 的出现,走出了一条复现 Deep Research 类智能体的可行路径。WebDancer 采用了多阶段的数据过滤策略,确保了数据的高质量。WebDancer 通过动态采样机制,确保了数据的高效利用。实验结果显示,WebDancer 在这些基准测试中取得了显著的成绩,超越了 GPT-4o 等强大的基线模型。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/t/2025-06-12/doc-inezvcxy3585627.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4588","BK4214","BK4585","LU0006061336.USD","BK4202","RL","SFT"],"gpt_icon":0},{"id":"2542638374","title":"新闻摘要-华尔街日报》--6 月 11 日","url":"https://stock-news.laohu8.com/highlight/detail?id=2542638374","media":"路透中文","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2542638374?lang=zh_cn&edition=fundamental","pubTime":"2025-06-11 13:54","pubTimestamp":1749621296,"startTime":"0","endTime":"0","summary":"新闻摘要-华尔街日报》--6 月 11 日路透6月11日 - 以下是《华尔街日报》的热门新闻。路透没有核实这些报道,也不保证其准确性。- 谷歌GOOGL.O向多个部门的美国员工发出了 自愿收购要约,这是该公司为资助数十亿人工智能支出而采取的一系列削减成本措施之一。对于因为使用自动化翻译功能而造成的任何损害或损失,路透不承担任何责任。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://api.refinitiv.com/data/news/v1/stories/urn:newsml:reuters.com:20250611:nL4S3SE0EK:1","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":null,"symbols":["LU0345768740.USD","LU2491050071.SGD","GM","GOOGL","BK4587","LU0742534661.SGD","LU1839511570.USD","LU2054465674.USD","LU0211331839.USD","LU1069344957.HKD","LU1244550577.SGD","BK4581","LU0316494557.USD","LU0949170772.SGD","IE00B4JS1V06.HKD","LU1267930490.SGD","LU0345770993.USD","LU1732799900.SGD","META","LU1814569148.SGD","LU1917777945.USD","LU0211328371.USD","LU1868837300.USD","LU1280957306.USD","SG9999015952.SGD","LU0096364046.USD","LU0683600562.USD","LU1059921491.USD","LU1267930730.SGD","IE00BK4W5M84.HKD","BK4576","LU1852331112.SGD","LU0690374961.EUR","LU0738911758.USD","LU2242649171.HKD","LU0345774391.USD","LU0321505868.SGD","LU0494093205.USD","LU1043141396.HKD","IE0034235303.USD","LU1153585028.USD","LU0302445910.USD","RL","LU1032955483.USD","LU2471134952.CNY","LU1633808545.USD","LU2361045086.USD","IE00B7KXQ091.USD","VZ","LU1316542783.SGD"],"gpt_icon":0}],"pageSize":20,"totalPage":8,"pageCount":1,"totalSize":145,"code":"91000000","status":"200"}],"@#url:\"https://hq.skytigris.cn/fundamental/corporate_actions/details/RL\",params:#limit:5,,,undefined,":[{"date":"2025-06-27","symbol":"RL","amount":0.9125,"announcedDate":null,"type":"dividend","lastAmount":null,"market":"US","newRecordDate":"2025-06-27","defaultRemindTime":1751031000000,"name":"拉夫劳伦","lastCurrency":null,"lastExecuteDate":null,"recordDate":"2025-07-11","payableDate":"2025-06-27","currency":"USD","dateTimestamp":1750996800000,"payDate":"2025-07-11"},{"market":"US","date":"2025-05-22","symbol":"RL","fiscalQuarterEnding":"2025/03","expectedEps":2,"name":null,"time":"盘前","type":"earning","dateTimestamp":1747886400000,"reportTimeType":"pre","actualEps":2.27},{"date":"2025-03-28","symbol":"RL","amount":0.825,"announcedDate":"2025-03-14","type":"dividend","lastAmount":null,"market":"US","newRecordDate":"2025-03-28","defaultRemindTime":1743168600000,"name":"拉夫劳伦","lastCurrency":null,"lastExecuteDate":null,"recordDate":"2025-04-11","payableDate":"2025-03-28","currency":"USD","dateTimestamp":1743134400000,"payDate":"2025-04-11"},{"market":"US","date":"2025-02-06","symbol":"RL","fiscalQuarterEnding":"2024/12","expectedEps":4.48,"name":null,"time":"盘前","type":"earning","dateTimestamp":1738818000000,"reportTimeType":"pre","actualEps":4.82},{"date":"2024-12-27","symbol":"RL","amount":0.825,"announcedDate":"2024-12-13","type":"dividend","lastAmount":null,"market":"US","newRecordDate":"2024-12-27","defaultRemindTime":1735309800000,"name":"拉夫劳伦","lastCurrency":null,"lastExecuteDate":null,"recordDate":"2025-01-10","payableDate":"2024-12-27","currency":"USD","dateTimestamp":1735275600000,"payDate":"2025-01-10"}],"@#url:\"https://hq.skytigris.cn/fundamental/dividend/history\",params:#symbol:\"RL\",market:\"US\",,,undefined,":[{"executeDate":"2015-09-23","recordDate":"2015-09-25","paymentDate":"2015-10-09","value":0.5,"currency":"USD"},{"executeDate":"2015-12-22","recordDate":"2015-12-24","paymentDate":"2016-01-08","value":0.5,"currency":"USD"},{"executeDate":"2016-03-30","recordDate":"2016-04-01","paymentDate":"2016-04-15","value":0.5,"currency":"USD"},{"executeDate":"2016-06-29","recordDate":"2016-07-01","paymentDate":"2016-07-15","value":0.5,"currency":"USD"},{"executeDate":"2016-09-28","recordDate":"2016-09-30","paymentDate":"2016-10-14","value":0.5,"currency":"USD"}],"@#url:\"https://hq.skytigris.cn/fundamental/estimate/recommendation\",params:#symbol:\"RL\",market:\"US\",delay:false,,,undefined,":{"strongBuy":0.2222,"buy":0.5556,"hold":0.1111,"sell":0.1111,"strongSell":0,"meanLabel":"BUY","meanPercent":0.5556,"analysts":18,"updateTime":1748664000000},"@#url:\"https://hq.skytigris.cn/value_analysis/stock/RL\",params:#withQuantilePoint:true,period:\"5year\",factor:\"peRate\",delay:false,algorithm:1,,,undefined,":{"brief":{"id":"RL","date":"2025-07-03","current":22.814549,"percent":0.865041,"low":-102.461698,"twenty":11.224544,"median":15.734825,"eighty":21.160567,"high":55.67915,"avg":7.590683,"sd":31.921091,"marketCap":16948928611},"quantilePoints":[{"date":"2020-07-10","current":13.041848,"twenty":11.236909,"median":14.11264,"eighty":23.539833,"marketCap":5011982019},{"date":"2020-07-17","current":13.860508,"twenty":11.236909,"median":14.091326,"eighty":23.539833,"marketCap":5326593242},{"date":"2020-07-24","current":13.508843,"twenty":11.236909,"median":14.057603,"eighty":23.539833,"marketCap":5191448467},{"date":"2020-07-31","current":13.480483,"twenty":11.236909,"median":14.020397,"eighty":23.539833,"marketCap":5180549695},{"date":"2020-08-07","current":34.537829,"twenty":11.236909,"median":14.027886,"eighty":23.637663,"marketCap":4818027158},{"date":"2020-08-14","current":36.998833,"twenty":11.236909,"median":14.058619,"eighty":23.766592,"marketCap":5161337159},{"date":"2020-08-21","current":35.108572,"twenty":11.236909,"median":14.102054,"eighty":23.879275,"marketCap":4897645861},{"date":"2020-08-28","current":37.27635,"twenty":11.236909,"median":14.138526,"eighty":24.085248,"marketCap":5200050840},{"date":"2020-09-04","current":38.773897,"twenty":11.236909,"median":14.236135,"eighty":33.926208,"marketCap":5408958628},{"date":"2020-09-11","current":39.87873,"twenty":11.236909,"median":14.351969,"eighty":34.208445,"marketCap":5563082904},{"date":"2020-09-18","current":39.705937,"twenty":11.236909,"median":14.54394,"eighty":34.600222,"marketCap":5538978160},{"date":"2020-09-25","current":37.213516,"twenty":11.236909,"median":14.712353,"eighty":35.238574,"marketCap":5191285478},{"date":"2020-10-02","current":36.616592,"twenty":11.236909,"median":14.797673,"eighty":35.417101,"marketCap":5108014542},{"date":"2020-10-09","current":38.690118,"twenty":11.236909,"median":14.856041,"eighty":35.582655,"marketCap":5397271479},{"date":"2020-10-16","current":39.161374,"twenty":11.236909,"median":15.022091,"eighty":35.868865,"marketCap":5463011691},{"date":"2020-10-23","current":40.52278,"twenty":11.236909,"median":15.19388,"eighty":35.964952,"marketCap":5652927862},{"date":"2020-10-30","current":-59.767894,"twenty":11.210148,"median":15.27232,"eighty":36.065975,"marketCap":4883036924},{"date":"2020-11-06","current":-61.051102,"twenty":11.177196,"median":15.27232,"eighty":36.065975,"marketCap":4987875003},{"date":"2020-11-13","current":-69.444174,"twenty":11.16007,"median":15.263875,"eighty":36.065975,"marketCap":5673589022},{"date":"2020-11-20","current":-69.989992,"twenty":11.092438,"median":15.263875,"eighty":36.065975,"marketCap":5718182364},{"date":"2020-11-27","current":-78.723083,"twenty":11.063051,"median":15.263875,"eighty":36.065975,"marketCap":6431675843},{"date":"2020-12-04","current":-86.087154,"twenty":11.017362,"median":15.263875,"eighty":36.065975,"marketCap":7033320446},{"date":"2020-12-11","current":-90.677395,"twenty":10.954142,"median":15.263875,"eighty":36.065975,"marketCap":7408343145},{"date":"2020-12-18","current":-90.561073,"twenty":10.92353,"median":15.263875,"eighty":36.065975,"marketCap":7398839646},{"date":"2020-12-24","current":-90.301585,"twenty":10.9095,"median":15.263875,"eighty":36.065975,"marketCap":7377639532},{"date":"2020-12-31","current":-92.824876,"twenty":10.891114,"median":15.263875,"eighty":36.065975,"marketCap":7583792361},{"date":"2021-01-08","current":-97.960935,"twenty":10.863071,"median":15.263875,"eighty":36.065975,"marketCap":8003408403},{"date":"2021-01-15","current":-98.488858,"twenty":10.812929,"median":15.263875,"eighty":36.065975,"marketCap":8046539668},{"date":"2021-01-22","current":-97.057203,"twenty":10.785148,"median":15.263875,"eighty":36.065975,"marketCap":7929573524},{"date":"2021-01-29","current":-90.417907,"twenty":10.720139,"median":15.263875,"eighty":36.065975,"marketCap":7387143032},{"date":"2021-02-05","current":-26.801833,"twenty":10.668166,"median":15.263875,"eighty":36.065975,"marketCap":7933342711},{"date":"2021-02-12","current":-27.345281,"twenty":10.668166,"median":15.263875,"eighty":36.065975,"marketCap":8094203116},{"date":"2021-02-19","current":-28.02706,"twenty":10.668166,"median":15.263875,"eighty":36.065975,"marketCap":8296009806},{"date":"2021-02-26","current":-28.921278,"twenty":10.668166,"median":15.263875,"eighty":36.065975,"marketCap":8560698291},{"date":"2021-03-05","current":-30.186028,"twenty":10.648886,"median":15.271921,"eighty":36.091338,"marketCap":8935064325},{"date":"2021-03-12","current":-30.625726,"twenty":10.616213,"median":15.271921,"eighty":36.091338,"marketCap":9065215016},{"date":"2021-03-19","current":-30.074868,"twenty":10.503024,"median":15.271921,"eighty":36.091338,"marketCap":8902161060},{"date":"2021-03-26","current":-30.176147,"twenty":10.390607,"median":15.263875,"eighty":36.065975,"marketCap":8932139590},{"date":"2021-04-01","current":-29.62776,"twenty":10.338984,"median":15.263875,"eighty":36.065975,"marketCap":8769816818},{"date":"2021-04-09","current":-31.505123,"twenty":10.180448,"median":15.271921,"eighty":36.091338,"marketCap":9325516399},{"date":"2021-04-16","current":-30.768999,"twenty":10.063232,"median":15.271921,"eighty":36.091338,"marketCap":9107623668},{"date":"2021-04-23","current":-30.996259,"twenty":9.87646,"median":15.271921,"eighty":36.091338,"marketCap":9174892565},{"date":"2021-04-30","current":-32.925497,"twenty":8.955421,"median":15.271921,"eighty":36.091338,"marketCap":9745947004},{"date":"2021-05-07","current":-34.494083,"twenty":8.438366,"median":15.271921,"eighty":36.091338,"marketCap":10210248628},{"date":"2021-05-14","current":-33.713495,"twenty":8.183497,"median":15.271921,"eighty":36.091338,"marketCap":9979194591},{"date":"2021-05-21","current":-73.125273,"twenty":8.07148,"median":15.271921,"eighty":36.091338,"marketCap":8855470570},{"date":"2021-05-28","current":-74.93091,"twenty":7.932179,"median":15.271921,"eighty":36.091338,"marketCap":9074133192},{"date":"2021-06-04","current":-72.932028,"twenty":7.826594,"median":15.271921,"eighty":36.091338,"marketCap":8832068550},{"date":"2021-06-11","current":-74.115656,"twenty":7.712137,"median":15.271921,"eighty":36.091338,"marketCap":8975405921},{"date":"2021-06-18","current":-68.87026,"twenty":7.604777,"median":15.271921,"eighty":36.091338,"marketCap":8340188542},{"date":"2021-06-25","current":-73.543339,"twenty":7.425327,"median":15.271921,"eighty":36.091338,"marketCap":8906098409},{"date":"2021-07-02","current":-71.485971,"twenty":7.278484,"median":15.271921,"eighty":36.091338,"marketCap":8656951078},{"date":"2021-07-09","current":-70.642389,"twenty":7.010973,"median":15.271921,"eighty":36.091338,"marketCap":8554793323},{"date":"2021-07-16","current":-65.957172,"twenty":-27.294888,"median":15.271921,"eighty":36.091338,"marketCap":7987413559},{"date":"2021-07-23","current":-66.752203,"twenty":-27.832407,"median":15.271921,"eighty":36.091338,"marketCap":8083691732},{"date":"2021-07-30","current":-68.894536,"twenty":-28.926218,"median":15.271921,"eighty":36.091338,"marketCap":8343128333},{"date":"2021-08-06","current":52.842625,"twenty":-28.958331,"median":15.293029,"eighty":36.205347,"marketCap":9051941605},{"date":"2021-08-13","current":53.40478,"twenty":-28.958331,"median":15.453101,"eighty":36.515636,"marketCap":9148238856},{"date":"2021-08-20","current":49.894526,"twenty":-28.958331,"median":15.63625,"eighty":36.738071,"marketCap":8546932357},{"date":"2021-08-27","current":50.769944,"twenty":-28.958331,"median":15.827775,"eighty":36.92591,"marketCap":8696891435},{"date":"2021-09-03","current":49.276584,"twenty":-28.958331,"median":15.907804,"eighty":37.158684,"marketCap":8441078890},{"date":"2021-09-10","current":48.332506,"twenty":-28.958331,"median":16.086353,"eighty":37.313562,"marketCap":8279358315},{"date":"2021-09-17","current":48.508448,"twenty":-28.958331,"median":16.161461,"eighty":37.519535,"marketCap":8309497150},{"date":"2021-09-24","current":49.980352,"twenty":-28.958331,"median":16.288642,"eighty":37.639741,"marketCap":8561634227},{"date":"2021-10-01","current":49.259419,"twenty":-28.958331,"median":16.376453,"eighty":38.034534,"marketCap":8438138516},{"date":"2021-10-08","current":48.598565,"twenty":-28.958331,"median":16.485653,"eighty":38.401979,"marketCap":8324934114},{"date":"2021-10-15","current":50.975925,"twenty":-28.958331,"median":16.580641,"eighty":38.677805,"marketCap":8732175924},{"date":"2021-10-22","current":52.838333,"twenty":-28.958331,"median":16.705533,"eighty":38.794842,"marketCap":9051206511},{"date":"2021-10-29","current":54.572004,"twenty":-28.958331,"median":16.839219,"eighty":38.99617,"marketCap":9348184293},{"date":"2021-11-05","current":23.257659,"twenty":-28.958331,"median":16.969387,"eighty":39.048208,"marketCap":9389116898},{"date":"2021-11-12","current":22.778063,"twenty":-28.958331,"median":17.083725,"eighty":39.048208,"marketCap":9195504091},{"date":"2021-11-19","current":22.21276,"twenty":-28.958331,"median":17.333507,"eighty":39.048208,"marketCap":8967291276},{"date":"2021-11-26","current":21.231686,"twenty":-28.958331,"median":17.377483,"eighty":39.048208,"marketCap":8571231617},{"date":"2021-12-03","current":21.184273,"twenty":-28.958331,"median":17.653651,"eighty":39.048208,"marketCap":8552091188},{"date":"2021-12-10","current":22.411528,"twenty":-28.958331,"median":17.766916,"eighty":39.048208,"marketCap":9047533847},{"date":"2021-12-17","current":20.980035,"twenty":-28.958331,"median":17.990368,"eighty":39.048208,"marketCap":8469640106},{"date":"2021-12-23","current":20.44938,"twenty":-28.958331,"median":18.284993,"eighty":39.048208,"marketCap":8255414529},{"date":"2021-12-31","current":21.674811,"twenty":-28.958331,"median":18.476997,"eighty":39.048208,"marketCap":8750121017},{"date":"2022-01-07","current":21.528926,"twenty":-28.94598,"median":18.67231,"eighty":39.023955,"marketCap":8691227388},{"date":"2022-01-14","current":20.94174,"twenty":-28.94598,"median":18.774932,"eighty":39.023955,"marketCap":8454180529},{"date":"2022-01-21","current":19.785604,"twenty":-28.94598,"median":18.870106,"eighty":39.023955,"marketCap":7987448514},{"date":"2022-01-28","current":19.929666,"twenty":-28.94598,"median":19.181497,"eighty":39.023955,"marketCap":8045605973},{"date":"2022-02-04","current":16.831289,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":8442574545},{"date":"2022-02-11","current":17.272537,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":8663904788},{"date":"2022-02-18","current":17.959239,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":9008354428},{"date":"2022-02-25","current":19.0276,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":9544244054},{"date":"2022-03-04","current":16.465237,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":8258962960},{"date":"2022-03-11","current":15.257834,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7653329398},{"date":"2022-03-18","current":17.224298,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":8639707913},{"date":"2022-03-25","current":16.662451,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":8357885480},{"date":"2022-04-01","current":15.890621,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7970735472},{"date":"2022-04-08","current":14.984004,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7515976546},{"date":"2022-04-14","current":15.396877,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7723073334},{"date":"2022-04-22","current":15.500449,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7775025449},{"date":"2022-04-29","current":14.803816,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7425594099},{"date":"2022-05-06","current":13.980909,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7012823869},{"date":"2022-05-13","current":14.178123,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7111746390},{"date":"2022-05-20","current":13.228942,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":6635637280},{"date":"2022-05-27","current":11.545331,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":6928352919},{"date":"2022-06-03","current":12.283335,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":7371229327},{"date":"2022-06-10","current":11.652762,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":6992822269},{"date":"2022-06-17","current":10.475691,"twenty":-28.94598,"median":19.251729,"eighty":39.023955,"marketCap":6286462429},{"date":"2022-06-24","current":11.192261,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6716475735},{"date":"2022-07-01","current":10.535942,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6322619088},{"date":"2022-07-08","current":10.826349,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6496891941},{"date":"2022-07-15","current":10.804278,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6483647204},{"date":"2022-07-22","current":11.260797,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6757604128},{"date":"2022-07-29","current":11.457111,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6875412576},{"date":"2022-08-05","current":11.64181,"twenty":-28.958331,"median":19.26176,"eighty":39.048208,"marketCap":6986250111},{"date":"2022-08-12","current":11.988696,"twenty":-28.958331,"median":19.238389,"eighty":39.048208,"marketCap":6699283476},{"date":"2022-08-19","current":11.894087,"twenty":-28.958331,"median":19.030114,"eighty":39.048208,"marketCap":6646415800},{"date":"2022-08-26","current":11.413763,"twenty":-28.958331,"median":18.831209,"eighty":39.048208,"marketCap":6378010675},{"date":"2022-09-02","current":10.91767,"twenty":-28.958331,"median":18.735208,"eighty":39.048208,"marketCap":6100794270},{"date":"2022-09-09","current":11.70972,"twenty":-28.958331,"median":18.639206,"eighty":39.048208,"marketCap":6543391610},{"date":"2022-09-16","current":11.339774,"twenty":-28.958331,"median":18.437272,"eighty":39.048208,"marketCap":6336665441},{"date":"2022-09-23","current":10.362144,"twenty":-28.958331,"median":18.316442,"eighty":39.048208,"marketCap":5790366120},{"date":"2022-09-30","current":10.301497,"twenty":-28.958331,"median":18.144421,"eighty":39.048208,"marketCap":5756476584},{"date":"2022-10-07","current":11.008641,"twenty":-28.958331,"median":17.987867,"eighty":39.048208,"marketCap":6151628574},{"date":"2022-10-14","current":11.224544,"twenty":-28.958331,"median":17.818778,"eighty":39.048208,"marketCap":6272275322},{"date":"2022-10-21","current":11.002576,"twenty":-28.958331,"median":17.692504,"eighty":39.048208,"marketCap":6148239621},{"date":"2022-10-28","current":11.314302,"twenty":-28.958331,"median":17.653651,"eighty":39.048208,"marketCap":6322431836},{"date":"2022-11-04","current":11.530205,"twenty":-28.958331,"median":17.393314,"eighty":39.048208,"marketCap":6443078584},{"date":"2022-11-11","current":13.345366,"twenty":-28.958331,"median":17.344061,"eighty":39.048208,"marketCap":6886208610},{"date":"2022-11-18","current":13.152306,"twenty":-28.958331,"median":17.189267,"eighty":39.048208,"marketCap":6786590149},{"date":"2022-11-25","current":13.996141,"twenty":-28.958331,"median":17.065202,"eighty":39.048208,"marketCap":7222008589},{"date":"2022-12-02","current":14.774769,"twenty":-28.958331,"median":16.969387,"eighty":38.911085,"marketCap":7623781059},{"date":"2022-12-09","current":13.745547,"twenty":-28.958331,"median":16.899392,"eighty":38.70867,"marketCap":7092702507},{"date":"2022-12-16","current":13.447648,"twenty":-28.958331,"median":16.831289,"eighty":38.518371,"marketCap":6938986603},{"date":"2022-12-23","current":13.342808,"twenty":-28.958331,"median":16.705533,"eighty":38.032396,"marketCap":6884889160},{"date":"2022-12-30","current":13.510297,"twenty":-28.958331,"median":16.63975,"eighty":37.639741,"marketCap":6971313123},{"date":"2023-01-06","current":14.827189,"twenty":-28.958331,"median":16.577123,"eighty":37.523202,"marketCap":7650829781},{"date":"2023-01-13","current":15.190294,"twenty":-28.958331,"median":16.465237,"eighty":37.313562,"marketCap":7838191655},{"date":"2023-01-20","current":15.476686,"twenty":-28.958331,"median":16.370177,"eighty":37.133527,"marketCap":7985970035},{"date":"2023-01-27","current":15.702987,"twenty":-28.958331,"median":16.262256,"eighty":36.84458,"marketCap":8102741344},{"date":"2023-02-03","current":16.095498,"twenty":-28.458854,"median":16.220794,"eighty":36.738071,"marketCap":8305276891},{"date":"2023-02-10","current":15.150392,"twenty":-27.648129,"median":16.220794,"eighty":36.738071,"marketCap":7799421918},{"date":"2023-02-17","current":15.734825,"twenty":-27.239061,"median":16.220794,"eighty":36.738071,"marketCap":8100287868},{"date":"2023-02-24","current":15.245234,"twenty":7.010973,"median":16.220794,"eighty":36.738071,"marketCap":7848246656},{"date":"2023-03-03","current":15.237544,"twenty":7.29756,"median":16.220794,"eighty":36.738071,"marketCap":7844287893},{"date":"2023-03-10","current":14.524947,"twenty":7.498083,"median":16.220794,"eighty":36.738071,"marketCap":7477442568},{"date":"2023-03-17","current":14.216069,"twenty":7.631617,"median":16.220794,"eighty":36.738071,"marketCap":7318432275},{"date":"2023-03-24","current":14.237857,"twenty":7.717017,"median":16.220794,"eighty":36.738071,"marketCap":7329648768},{"date":"2023-03-31","current":14.953018,"twenty":7.828369,"median":16.214613,"eighty":36.729693,"marketCap":7697813681},{"date":"2023-04-06","current":14.590311,"twenty":7.936616,"median":16.214613,"eighty":36.729693,"marketCap":7511092050},{"date":"2023-04-14","current":15.377244,"twenty":8.095214,"median":16.220794,"eighty":36.738071,"marketCap":7916205412},{"date":"2023-04-21","current":14.837669,"twenty":8.21921,"median":16.220794,"eighty":36.738071,"marketCap":7638432243},{"date":"2023-04-28","current":14.705659,"twenty":8.46942,"median":16.220794,"eighty":36.738071,"marketCap":7570473487},{"date":"2023-05-05","current":14.077651,"twenty":9.006883,"median":16.220794,"eighty":36.738071,"marketCap":7247174550},{"date":"2023-05-12","current":14.222477,"twenty":10.254435,"median":16.220794,"eighty":36.738071,"marketCap":7321731243},{"date":"2023-05-19","current":14.454456,"twenty":10.469125,"median":16.220794,"eighty":36.738071,"marketCap":7441153912},{"date":"2023-05-26","current":14.389992,"twenty":10.532246,"median":16.174382,"eighty":36.578892,"marketCap":7521648750},{"date":"2023-06-02","current":13.274896,"twenty":10.532246,"median":16.105702,"eighty":36.3012,"marketCap":6938788123},{"date":"2023-06-09","current":14.731393,"twenty":10.532246,"median":16.055584,"eighty":36.013281,"marketCap":7700099216},{"date":"2023-06-16","current":15.199374,"twenty":10.532246,"median":15.880546,"eighty":35.869912,"marketCap":7944712917},{"date":"2023-06-23","current":15.331039,"twenty":10.530768,"median":15.831226,"eighty":35.555144,"marketCap":8013533827},{"date":"2023-06-30","current":15.372244,"twenty":10.529289,"median":15.739824,"eighty":35.406629,"marketCap":8035072076},{"date":"2023-07-07","current":15.444666,"twenty":10.529289,"median":15.651518,"eighty":35.253091,"marketCap":8072927179},{"date":"2023-07-14","current":15.818016,"twenty":10.529289,"median":15.636503,"eighty":34.787401,"marketCap":8268076765},{"date":"2023-07-21","current":15.884195,"twenty":10.529289,"median":15.636503,"eighty":34.265035,"marketCap":8302668498},{"date":"2023-07-28","current":15.791794,"twenty":10.529289,"median":15.636503,"eighty":33.826465,"marketCap":8254370607},{"date":"2023-08-04","current":16.508524,"twenty":10.529289,"median":15.636503,"eighty":23.565529,"marketCap":8629005598},{"date":"2023-08-11","current":15.021503,"twenty":10.529289,"median":15.580248,"eighty":23.505216,"marketCap":7982426462},{"date":"2023-08-18","current":14.336139,"twenty":10.527811,"median":15.479866,"eighty":23.331412,"marketCap":7618224175},{"date":"2023-08-25","current":13.816589,"twenty":10.527811,"median":15.457499,"eighty":23.140478,"marketCap":7342135345},{"date":"2023-09-01","current":14.325085,"twenty":10.527811,"median":15.436061,"eighty":23.017353,"marketCap":7612349945},{"date":"2023-09-08","current":14.283324,"twenty":10.527811,"median":15.413623,"eighty":22.879952,"marketCap":7590158407},{"date":"2023-09-15","current":14.129793,"twenty":10.527811,"median":15.374744,"eighty":22.767533,"marketCap":7508571874},{"date":"2023-09-22","current":13.785883,"twenty":10.527811,"median":15.309108,"eighty":22.706944,"marketCap":7325818038},{"date":"2023-09-29","current":14.172782,"twenty":10.527811,"median":15.27339,"eighty":22.677767,"marketCap":7531416103},{"date":"2023-10-06","current":13.779741,"twenty":10.527811,"median":15.262702,"eighty":22.64312,"marketCap":7322554577},{"date":"2023-10-13","current":13.487418,"twenty":10.527811,"median":15.243184,"eighty":22.526635,"marketCap":7167213816},{"date":"2023-10-20","current":14.376671,"twenty":10.527811,"median":15.201157,"eighty":22.411528,"marketCap":7639763020},{"date":"2023-10-27","current":13.912392,"twenty":10.496539,"median":15.173462,"eighty":22.367072,"marketCap":7393045342},{"date":"2023-11-03","current":13.820274,"twenty":10.496539,"median":15.138654,"eighty":22.317143,"marketCap":7344093422},{"date":"2023-11-10","current":14.277323,"twenty":10.496539,"median":15.061958,"eighty":22.22978,"marketCap":7535570913},{"date":"2023-11-17","current":14.780623,"twenty":10.496539,"median":15.021503,"eighty":22.15583,"marketCap":7801212876},{"date":"2023-11-24","current":15.25086,"twenty":10.496539,"median":15.009619,"eighty":22.022712,"marketCap":8049403907},{"date":"2023-12-01","current":15.843554,"twenty":10.496539,"median":15.009619,"eighty":21.901235,"marketCap":8362228019},{"date":"2023-12-08","current":16.062753,"twenty":10.506963,"median":15.011,"eighty":21.795732,"marketCap":8477921234},{"date":"2023-12-15","current":17.3706,"twenty":10.506963,"median":15.011,"eighty":21.679354,"marketCap":9168202539},{"date":"2023-12-22","current":18.113917,"twenty":10.506963,"median":15.011,"eighty":21.433384,"marketCap":9560525341},{"date":"2023-12-29","current":17.842061,"twenty":10.496539,"median":15.009619,"eighty":21.326,"marketCap":9417039901},{"date":"2024-01-05","current":17.467341,"twenty":10.486115,"median":15.005984,"eighty":21.234604,"marketCap":9219262673},{"date":"2024-01-12","current":17.453871,"twenty":10.486115,"median":15.005984,"eighty":21.120088,"marketCap":9212153034},{"date":"2024-01-19","current":16.899138,"twenty":10.475691,"median":15.002349,"eighty":20.980035,"marketCap":8919365178},{"date":"2024-01-26","current":17.3706,"twenty":10.486115,"median":15.005984,"eighty":20.814457,"marketCap":9168202539},{"date":"2024-02-02","current":17.922883,"twenty":10.486115,"median":15.005984,"eighty":20.683615,"marketCap":9459697735},{"date":"2024-02-09","current":18.686183,"twenty":10.486115,"median":15.005984,"eighty":20.583615,"marketCap":10985606798},{"date":"2024-02-16","current":19.698509,"twenty":10.486115,"median":15.005984,"eighty":20.41758,"marketCap":11580753724},{"date":"2024-02-23","current":20.34766,"twenty":10.486115,"median":15.005984,"eighty":20.387521,"marketCap":11962389294},{"date":"2024-03-01","current":20.21609,"twenty":10.496539,"median":15.009619,"eighty":20.363509,"marketCap":11885039371},{"date":"2024-03-08","current":19.540843,"twenty":10.496539,"median":15.009619,"eighty":20.30354,"marketCap":11488061668},{"date":"2024-03-15","current":19.818118,"twenty":10.496539,"median":15.009619,"eighty":20.211387,"marketCap":11651071836},{"date":"2024-03-22","current":20.7054,"twenty":10.496539,"median":15.009619,"eighty":20.150353,"marketCap":12172704373},{"date":"2024-03-28","current":20.279157,"twenty":10.496539,"median":15.009619,"eighty":20.112251,"marketCap":11922116194},{"date":"2024-04-05","current":18.608981,"twenty":10.486115,"median":15.005984,"eighty":20.036024,"marketCap":10940219653},{"date":"2024-04-12","current":17.94352,"twenty":10.486115,"median":15.005984,"eighty":19.935245,"marketCap":10548995251},{"date":"2024-04-19","current":17.107344,"twenty":10.486115,"median":15.005984,"eighty":19.903989,"marketCap":10057407725},{"date":"2024-04-26","current":18.151204,"twenty":10.496539,"median":15.009619,"eighty":19.875368,"marketCap":10671093063},{"date":"2024-05-03","current":17.932646,"twenty":10.496539,"median":15.009619,"eighty":19.836377,"marketCap":10542602695},{"date":"2024-05-10","current":18.271901,"twenty":10.496539,"median":15.009619,"eighty":19.806729,"marketCap":10742050430},{"date":"2024-05-17","current":18.059867,"twenty":10.496539,"median":15.009619,"eighty":19.776483,"marketCap":10617395596},{"date":"2024-05-24","current":16.400624,"twenty":10.496539,"median":15.009619,"eighty":19.711387,"marketCap":10599723366},{"date":"2024-05-31","current":17.935553,"twenty":10.496539,"median":15.009619,"eighty":19.698524,"marketCap":11591747957},{"date":"2024-06-07","current":17.600906,"twenty":10.496539,"median":15.009619,"eighty":19.673702,"marketCap":11375465343},{"date":"2024-06-14","current":18.018731,"twenty":10.486115,"median":15.005984,"eighty":19.616361,"marketCap":11645506063},{"date":"2024-06-21","current":17.852375,"twenty":10.475691,"median":15.002349,"eighty":19.587636,"marketCap":11537989851},{"date":"2024-06-28","current":17.049581,"twenty":10.465841,"median":14.992749,"eighty":19.532395,"marketCap":11019144171},{"date":"2024-07-05","current":16.259486,"twenty":10.465841,"median":14.992749,"eighty":19.492985,"marketCap":10508505489},{"date":"2024-07-12","current":17.831921,"twenty":10.465841,"median":14.992749,"eighty":19.424433,"marketCap":11524770448},{"date":"2024-07-15","current":17.603132,"twenty":10.465841,"median":14.992749,"eighty":19.407219,"marketCap":11376904523},{"date":"2024-08-02","current":16.732573,"twenty":10.370878,"median":14.953018,"eighty":19.293859,"marketCap":10814262147},{"date":"2024-08-09","current":14.661163,"twenty":10.370878,"median":14.94661,"eighty":19.293859,"marketCap":10010642272},{"date":"2024-08-16","current":14.901555,"twenty":10.370878,"median":14.909204,"eighty":19.293859,"marketCap":10174781624},{"date":"2024-08-23","current":15.333352,"twenty":10.370878,"median":14.903132,"eighty":19.293859,"marketCap":10469613063},{"date":"2024-08-30","current":15.482123,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":10571193643},{"date":"2024-09-06","current":15.729772,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":10740288145},{"date":"2024-09-13","current":15.907571,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":10861689326},{"date":"2024-09-20","current":16.76028,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":11443919479},{"date":"2024-09-27","current":17.925953,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":12239840486},{"date":"2024-10-04","current":17.454241,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":11917755720},{"date":"2024-10-11","current":18.062931,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":12333368947},{"date":"2024-10-18","current":18.409457,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":12569977371},{"date":"2024-10-25","current":17.955888,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":12260280481},{"date":"2024-10-31","current":18.296065,"twenty":10.370878,"median":14.909442,"eighty":19.293859,"marketCap":12492553148},{"date":"2024-11-08","current":20.081837,"twenty":10.368694,"median":14.909323,"eighty":19.306707,"marketCap":13731960102},{"date":"2024-11-15","current":19.204353,"twenty":10.368694,"median":14.909323,"eighty":19.340934,"marketCap":13131936805},{"date":"2024-11-22","current":18.809314,"twenty":10.368694,"median":14.909323,"eighty":19.340934,"marketCap":12861809009},{"date":"2024-11-29","current":21.014269,"twenty":10.368694,"median":14.909323,"eighty":19.399288,"marketCap":14369556801},{"date":"2024-12-06","current":21.176825,"twenty":10.368694,"median":14.909323,"eighty":19.446613,"marketCap":14480712837},{"date":"2024-12-13","current":20.529324,"twenty":10.368694,"median":14.909323,"eighty":19.521759,"marketCap":14037951644},{"date":"2024-12-20","current":20.202395,"twenty":10.368694,"median":14.909323,"eighty":19.551168,"marketCap":13814397606},{"date":"2024-12-27","current":21.125061,"twenty":10.368694,"median":14.909323,"eighty":19.570422,"marketCap":14445316781},{"date":"2025-01-03","current":21.028799,"twenty":10.368694,"median":14.909323,"eighty":19.638705,"marketCap":14379492536},{"date":"2025-01-10","current":22.072247,"twenty":10.366511,"median":14.909204,"eighty":19.685026,"marketCap":15093002509},{"date":"2025-01-17","current":21.58821,"twenty":10.366511,"median":14.909204,"eighty":19.711387,"marketCap":14762018335},{"date":"2025-01-24","current":23.295506,"twenty":10.366511,"median":14.909204,"eighty":19.805112,"marketCap":15929467202},{"date":"2025-01-31","current":23.475317,"twenty":10.366511,"median":14.909204,"eighty":19.886187,"marketCap":16052421924},{"date":"2025-02-07","current":23.943057,"twenty":10.366511,"median":14.91833,"eighty":19.977275,"marketCap":16870277685},{"date":"2025-02-14","current":24.415536,"twenty":10.366511,"median":14.969107,"eighty":20.078996,"marketCap":17203186803},{"date":"2025-02-21","current":25.114175,"twenty":10.366511,"median":14.985059,"eighty":20.169163,"marketCap":17695447597},{"date":"2025-02-28","current":23.731799,"twenty":10.366511,"median":15.013799,"eighty":20.276786,"marketCap":16721425926},{"date":"2025-03-07","current":20.892539,"twenty":10.364327,"median":15.083895,"eighty":20.412684,"marketCap":14720883003},{"date":"2025-03-14","current":18.993855,"twenty":10.462558,"median":15.14291,"eighty":20.412684,"marketCap":13383070106},{"date":"2025-03-21","current":19.73457,"twenty":10.550466,"median":15.16449,"eighty":20.412684,"marketCap":13904977722},{"date":"2025-03-28","current":19.737199,"twenty":10.715172,"median":15.201157,"eighty":20.417936,"marketCap":13906830649},{"date":"2025-04-04","current":17.346751,"twenty":10.778494,"median":15.243184,"eighty":20.44318,"marketCap":12222520506},{"date":"2025-04-11","current":17.06449,"twenty":10.816494,"median":15.255829,"eighty":20.43698,"marketCap":12023639734},{"date":"2025-04-17","current":17.71141,"twenty":10.865514,"median":15.264459,"eighty":20.43698,"marketCap":12479459640},{"date":"2025-04-25","current":19.29803,"twenty":10.940628,"median":15.314128,"eighty":20.44318,"marketCap":13597391932},{"date":"2025-05-02","current":19.680221,"twenty":11.001606,"median":15.375255,"eighty":20.44318,"marketCap":13866683909},{"date":"2025-05-09","current":22.043496,"twenty":11.04723,"median":15.406189,"eighty":20.603959,"marketCap":15531847146},{"date":"2025-05-16","current":23.588916,"twenty":11.148223,"median":15.436208,"eighty":20.693806,"marketCap":16620750256},{"date":"2025-05-23","current":22.526626,"twenty":11.222603,"median":15.469307,"eighty":20.717941,"marketCap":16735030815},{"date":"2025-05-30","current":22.551799,"twenty":11.228077,"median":15.486905,"eighty":20.846226,"marketCap":16753731195},{"date":"2025-06-06","current":22.339865,"twenty":11.228077,"median":15.503622,"eighty":20.951814,"marketCap":16596286056},{"date":"2025-06-13","current":21.696758,"twenty":11.228077,"median":15.543848,"eighty":21.014269,"marketCap":16118521497},{"date":"2025-06-20","current":21.74629,"twenty":11.224544,"median":15.643594,"eighty":21.03788,"marketCap":16155319020},{"date":"2025-06-27","current":22.299243,"twenty":11.224544,"median":15.696245,"eighty":21.125061,"marketCap":16566107308},{"date":"2025-07-03","current":22.814549,"twenty":11.224544,"median":15.734825,"eighty":21.160567,"marketCap":16948928611}],"updateTime":1751789787444}}}